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A Mathematical details

A.1 Derivations conditional on states
A.1.1 Weights for two-state Markov switching model
In order to derive weights (10)—(13), define A = '820;251 and ¢ = 2L, m =

o2’
%Zthl s1t, and T = %Zthl s9¢. Then we have
M =Q+S'AN'S
= ¢*S1 + Sy + \sys))
where S; is a T x T" diagonal matrix with typical ¢, t-element s; ;. The inverse
of M is
)\2((]281 + Sg)_lsgsé(QQSl + Sg)_l
1+ A?s5(g*S1 + S2)~ sy

Mt = (q281 + Sg)il —

1 S +S AQ(q%Sl + Sg)SgSlz(q%Sl + SQ)
B A 1+ A28h( 581 + Sy)s:
1 A2sys!,
= S| +Sy— — -2
q? ! 27 1+ A2Tm,
The weights are given by
M1,
2ng—1 2 Ing—1
w = \"M 5252 T+1 + m (1 — XM S2827T+1)
The various components needed to calculate the weights are given by
ATy
M lsy=syg — ——— =
2RI,
1
= ———8§
14+ 2Ty °
AT 7o

1
M1, = = - s
L O C
s1(1 4+ N2Tmg) + ¢°so

¢2(1 + \2T'mg)

and
2 "ML m + T2 + g7 T2

lel — —
R D Py (1 + \2T'm)




This yields the weights
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In order to show the symmetry of the weights, consider the definition of
A and ¢ conditional on the regime s; 741. If s 741 = 1, define A = /820;261 and
g =2, but if sy 71 = 1, define A, = 2222 and g, = 2. Then, A* = A\2/q¢?
and we have for w(; ) and w(q 1)
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The symmetry of the weights is a natural consequence of the fact that the
Markov Switching model is invariant under a relabeling of the states.
A.1.2 Weights and MSFE for m-state Markov switching model

To derive weights for an m-state Markov switching model, we will concen-
trate on s; 741 = 1 as we have shown above that the weights are symmetric.
In this case, define \; = (5; — Br)/ox and ¢; = 0;/0). The model is given by
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The inverse can be expressed analytically through the Sherman Morrison

formula as
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Since the weights should sum up to one, we have
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where w1y is the weight when si 741 = sgr = 1.

A.2 Derivations conditional on state probabilities
A.2.1 Large T approximation for optimal weights
Rewrite (21) as
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To perform the large sample approximation we need to establish that % 23:1 dy <
0, %Zle €opdy < 00 and %Zthl €2,d; < c0. Proving the first of these re-
lations implies the other two, since 0 < & < 1. Define a; = d%. We then
need to prove that a; > 0. The only scenario where a; = 0 is when &3 = 0
and ¢ = 0, so the only restriction that we must impose to obtain a; > 0 is
that ¢> > 0. Then
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where ami, is the mlmmum value of a; over t =1,2,...,T.
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The numerator is nonzero unless for the trivial case when & is constant for
all t. Using this and the result that d, d¢ and CEQ are finite for any T proves
that we can apply the expansion in terms of #/T. Dividing w; by Zle dy
yields (23).



A.2.2 Weights and MSFE for standard Markov switching model

The Markov switching weights can be written as

§ir+1&1  Sorv1€o
PIARE TR SR Y
1&rné 10 -&rn)—§)

WMS =

SO
B Tm(éwﬂﬁg(l G+ &)+ bt — Eabariit — Eaty)
- ;M(iwﬂ — &)(&y — &or) + La(1 - &)
_ % + ;(52:“15_2 y 152_)(5522) — &) "

For a general vector of weights w, subject to Zthl wy = 1, and assuming
a constant error variance, we have the following MSFE
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So that the MSFE is
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A.2.3 MSFE for Markov switching model using optimal weights

Equation (22) for an arbitrary number of states is derived as follows
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A.2.4 Derivation of (32)

To save on notation, in the following we use p(s;¢|si t+m, S21) to write p(sj; =
1]sit+m = 1,9Q7). To derive (32), take for example a three state model and



calculate
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depends on future observations only through s;1.
A.3 The MSFE with exogenous regressors
The expected MSFE is given by
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B Additional Monte Carlo results

B.1 Monte Carlo results for 7' = 50 and 100

Tables 8 and 9 report the results for the mean only model for T' = 50 and
100 and complement the results in Tables 3 and 4 in the paper.

B.2 Exogenous regressors

In this set of experiments, we use the set up of the experiments of the mean
only, two state model and add an exogenous regressor to the model, such



Table 8: Monte Carlo results: two states, mean only models

T =50 T =100

~2 . R R R R R
A Ufm W we Wy W we Wy

Switches in mean

1 0.0-0.1 0.982 1.008 1.008 0.993 1.005 1.005
0.1-0.2 0991 1.026 1.030 0.997 1.013 1.022
0.2-0.3 0996 1.034 1.039 0.999 1.019 1.032
0.3-0.4 0.999 1.036 1.042 1.000 1.024 1.037

2 0.0-01 0996 1.009 1.017 0.999 1.005 1.023
0.1-0.2 1.001 1.009 1.025 1.002 0.994 1.034
0.2-0.3 1.004 0.983 1.002 1.003 0977 1.004
0.3-0.4 1.005 0.961 0.977 1.004 0.960 0.973

3 0.0-0.1 1.000 0.997 1.009 1.000 0.997 1.022
0.1-0.2 1.004 0.969 0.999 1.005 0.961 0.993
0.2-0.3 1.007 0.926 0.950 1.007 0.920 0.944
0.3-0.4 1.009 0.890 0.907 1.007 0.892 0.912

Switches in mean and variance (¢ = 2)

1 0.0-0.1 0.984 1.001 1.002 0.992 1.001 1.001
0.1-0.2 0.990 1.016 1.018 0.996 1.009 1.013
0.2-0.3 0.996 1.029 1.032 0.999 1.014 1.021
0.3-0.4 1.000 1.028 1.034 1.001 1.018 1.026

2 0.0-0.1 0.993 1.009 1.011 0.998 1.005 1.019
0.1-0.2 0.999 1.015 1.028 1.002 0.999 1.030
0.2-0.3 1.002 1.003 1.018 1.003 0.992 1.021
0.3-0.4 1.006 0.983 0.998 1.003 0.987 1.003

3 0.0-0.1 0.998 1.003 1.016 1.000 0.999 1.027
0.1-0.2 1.004 0.985 1.011 1.003 0.980 1.025
0.2-0.3 1.007 0.953 0.971 1.007 0.946 0.962
0.3-0.4 1.009 0.929 0.942 1.007 0.920 0.939

Note: The table reports the ratio of the MSFE of the optimal
weights to that of the Markov switching weights. y; = SB1s1: +
Basar+ (0151 +0289;)es where ey ~ N(0,1), 03 = 0.25, ¢> = 03 /03.

Column labels: A = (82 — B1)/02, 52 is the normalized variance
T
in of the smoothed probability vector (35). w;: forecasts from

weights based on estimated parameters and state probabilities.
wg: forecasts from weights conditional on state probabilities. wyy,

are the weights based on numerically inverting M.
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Table 9: Monte Carlo results: three states, intercept only models

T =50 T =100

{/\31, )\21} 5§‘T Ws wé wM Ws wé wM

{2,1} 0.0-0.1 0.996 1.035 1.033 0.998 1.025 1.027
0.1-0.2 0998 1.033 1.037 0.999 1.027 1.046
0.2-0.3 0.999 1.027 1.032 1.000 1.012 1.027
0.3-0.4 1.001 1.017 1.025 1.001 1.007 1.018

{3,1} 0.0-0.1 0.998 1.020 1.016 0.999 1.011 1.026
0.1-0.2 1.000 1.011 1.013 1.001 0.998 1.013
0.2-0.3 1.002 0.991 0.993 1.002 0.971 0.986
0.3-0.4 1.004 0.962 0.967 1.003 0.939 0.953

{3.5,2}  0.0-0.1 0.999 1.014 1.013 1.000 1.009 1.013
0.1-0.2 1.000 1.004 1.003 1.001 0.994 1.008
0.2-0.3 1.002 0.983 0.988 1.002 0.964 0.979
0.3-0.4 1.004 0.946 0.947 1.003 0.933 0.946

Note: The table reports the ratio of the MSFE of the optimal weights to
that of the Markov switching weights. For details see Table 3.

that x; = [1, 2], 2t ~ N(0,02) and o, = 1/2 is chosen such that the centered
R? is of a similar magnitude to the model with a constant only. The latter
requirement is due to the fact that an important determinant of the quality
of the forecasts is how well identified the states are and increasing the R?
would improve the identification.

Table 10 displays the results for models that include an exogenous re-
gressor. The optimal forecast are obtained by using an asymptotic approx-
imation to the covariance matrix in (34). As the ratio of parameters to
estimate versus the number of observations increases, the performance of
the optimal weights w; is less pronounced but the differences are generally
small and the conclusions from experiments with mean only models carry
over to the case of exogenous regressors.

B.3 Monte Carlo results for MSI and MSM models

Table 11 presents Monte Carlo results for the models that are frequently used
in empirical applications. These models are the m-state Markov switching
in intercept (MSI) and Markov switching in mean (MSM) models which
include p lags of the dependent variable. We analyze the performance of the
optimal weights for an MSI(2)-AR(2) and MSM(2)-AR(2) model. For both
models, Table 11 shows that the improvements by using optimal weights are
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Table 10: Monte Carlo results: two states, models with ex-
0genous regressors

T =50 T =100
A 5‘ng Ws wé wM W3 ’LUé wM
1 0.0-0.1 0.962 0.988 0.986 0.986 1.002 1.002
0.1-0.2 0973 1.021 1.001 0.993 1.014 1.018
0.2-0.3 0.991 1.025 1.021 0.999 1.023 1.028
0.3-0.4 0.995 1.030 1.028 1.000 1.026 1.032
2 0.0-0.1 0.990 1.000 1.002 0.999 1.003 1.013
0.1-0.2 1.004 1.008 1.016 1.006 0.997 1.031
0.2-0.3 1.011 0.999 1.013 1.011 0.9v8 1.009
0.3-0.4 1.012 0.986 0.999 1.019 0.956 0.991
3 0.0-0.1 1.005 1.004 1.013 1.005 1.001 1.027
0.1-0.2 1.018 0.998 1.026 1.020 0.979 1.033
0.2-0.3 1.031 0.983 1.010 1.043 0.935 1.008
0.3-0.4 1.020 0.969 0.991 1.051 0.919 0.958

Note: The table reports the ratio of the MSFE of the optimal
asymptotic weights to that of the Markov switching weights. DGP:
yr = 2,81 + o (¥ \s9; + &;) where g, ~ NID(0,1). Also 02 = 0.25,
f1 =1 and x; = [1, z:] where z; ~ N(0,0.25). For the column labels
see the footnote of Table 3.

consistent with the results for the Markov switching model with no lagged
dependent variables. However, the additional parameter estimates imply
noise that leads to slightly less pronounced differences in MSFE compared
to the intercept only model.

11



Table 11: Monte Carlo results: MSI and MSM models

T =50 T =100

~2 R R R R . .
A o W we Wy W we Wy

MSI

1 0.0-0.1 0.988 1.008 1.002 0.994 1.006 1.006
0.1-0.2 0.994 1.019 1.016 0.997 1.016 1.020
0.2-0.3 0.997 1.018 1.018 0.999 1.017 1.026

2 0.0-0.1 0.997 1.005 1.006 0.999 1.003 1.020
0.1-0.2 1.000 1.005 1.017 1.002 0.994 1.030
0.2-0.3 1.003 0.993 1.007 1.003 0.985 1.018

3 0.0-0.1 1.000 0.999 1.004 1.000 0.999 1.012
0.1-0.2 1.004 0.983 1.026 1.004 0.972 1.020
0.2-0.3 1.005 0.970 0.986 1.006 0.944 0.981

MSM

1 0.0-0.1 0.991 1.010 1.008 0.994 1.019 1.020
0.1-0.2 0994 1.023 1.017 0.996 1.033 1.042
0.2-0.3 0.995 1.029 1.037 0.998 1.033 1.043

2 0.0-0.1 0.996 1.011 1.009 0.999 1.012 1.028
0.1-0.2 0.998 1.015 1.019 1.000 1.010 1.034
0.2-0.3 0.999 1.015 1.022 1.001 1.007 1.024

3 0.0-0.1 0.999 1.004 1.004 1.000 1.002 1.015
0.1-0.2 1.000 1.002 1.013 1.002 0.991 1.012
0.2-0.3 1.000 1.006 1.007 1.003 0.974 0.983

Note: The table reports the ratio of the MSFE of the optimal weights to

that of the Markov switching weights. DGP MSI: y; = 1514 + B2S2t +
D1Yt—1 + d2yi—2 + o€y where e, ~ N(0,1). DGP MSM: y; = B1s1¢ +
628275 + ¢1(yt*1 - ﬁst—l) + ¢2(yt*2 - /Bst—2) + o¢&t, o? = 0.25, ¢1 = 04,
¢o = —0.3. Column labels as in Table 3.
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